
26 The Delphi Magazine Issue 54

Under Construction:
VisiBroker For Delphi 5
by Bob Swart

Some months ago, we examined
CORBA and Delphi in this

column. Specifically, we created a
CORBA server in Delphi 5 and
made it communicate with a
CORBA client written in JBuilder.
At that time, CORBA in Delphi was
supported through the use of the
Type Library. There was no direct
mapping from IDL to Pascal, or at
least not one that was available to
most of us. Since then, things have
changed...

CORBA
Back in Issue 43, I described how to
use Delphi 4 to create CORBA cli-
ents and servers that could com-
municate with each other. This
was CORBA using the Type
Library, with a little COM layer.
Two issues later (May 1999),
Hubert A Klein Ikkink joined me for
a project where we created a
Delphi 4 CORBA server and a
JBuilder 2 CORBA client. This was
possible because the Type Library
of Delphi is able to produce stan-
dard CORBA Interface Definition
Language (IDL) files. An IDL file is
one of the features that makes
CORBA independent of both plat-
form and language. IDL can be used
to specify the module, methods,
arguments, structures and even
exceptions. The crux is the map-
ping between IDL and a program-
ming language (on any platform),
like an IDL2Java. Back in Issue 45,
Delphi 4’s Type Library produced a

CORBA IDL file, which could be
used by JBuilder’s VisiBroker
IDL2Java compiler to produce the
Java code for the CORBA client.

What we didn’t mention (at least
not explicitly in that article), is that
the other way around would have
been far more difficult. Sure, a
JBuilder CORBA server can pro-
duce a CORBA IDL file, but the hard
part would be to import this IDL file
into Delphi 4’s Type Library. While
we can paste an IDL file inside the
Type Library text pane and hit the
Refresh Implementation button,
this doesn’t always work for me (or
generate the expected result, for
that matter). What we’d need is a
true IDL2Pas, so any CORBA IDL
file could be turned into a set of
Object Pascal files. Unfortunately,
as you may know, this didn’t exist
at the time. And Delphi 5 Enter-
prise did not ship with an IDL2Pas
(which was very disappointing, by
the way). But December 1999
brought us Sinterklaas and Santa
Claus and a true IDL2PAS from
Inprise...

VisiBroker For Delphi 5
In the first half of December 1999,
Inprise decided to make VisiBroker
for Delphi 5 available as a free
download from www.borland.
com/visibroker/delphi/ (you just
need to complete a short survey).
Note that you need your official
Delphi 5 serial number and regis-
tration key (the same ones you
needed to install Delphi 5 Enter-
prise), and you also need some

units (like the CORBA unit) that are
only available in the Enterprise
edition of Delphi 5, so don’t bother
downloading this add-on tool if
you don’t have access to Delphi 5
Enterprise.

After installing VisiBroker for
Delphi 5, you can find both the
IDL2PAS.BAT and JAR files in the
BIN directory of Delphi 5, as well as
a number of interesting examples
in the DEMOS\IDL2PAS directory
and new documentation in the
IDL2PAS DOCS directory. Finally,
check out the SOURCES\RTL\
CORBA directory for a number of
new files (CORBA.PAS and
ORBPAS30.PAS). The IDL2PAS.PDF
file in the DOCS directory, the
VisiBroker for Pascal Reference
Guide, is especially interesting
(it’s in Adobe Acrobat format).

IDL2PAS
The IDL2PAS utility takes the IDL
file and generates the interface and
client stub code (but not the
server skeleton). So, if we run the
IDL2PAS batch file on the
BOBNOTES.IDL file (from Issue 45,
see Listing 1), we get two resulting
units: BOBNOTES_I.PAS and
BOBNOTES_C.PAS, the interface
and the client stub respectively.
Note that no server skeleton code
is generated. Yep, that’s right:
VisiBroker for Delphi currently
supports Delphi CORBA clients
only (based on IDL files from
‘other’ CORBA servers). So the
IDL2PAS currently only generates
xxx_I (interface) and xxx_C (client)
units, and not _S (server) units.

Armed with this BOBNOTES.IDL
file and the two generated units,
we can now write a new Delphi 5
CORBA client to connect and com-
municate with the existing CORBA
server.

The CORBA client’s main form is
defined as a memo with two but-
tons: Connect (the static way) and

module BobNotes
{
interface ICorBobNotes;
interface ICorBobNotes
{
void GetLines(in wstring User, in wstring Password, out wstring Lines);
void SetLines(in wstring User, in wstring Password, in wstring Lines);

};

interface CorBobNotesFactory
{
ICorBobNotes CreateInstance(in string InstanceName);

};
};

➤ Listing 1: BobNotes.IDL



February 2000 The Delphi Magazine 27

secondly DII (the dynamic way,
using Dynamic Interface Invoca-
tion).

Actually, there are now three
ways for a Delphi CORBA client to
connect to a Delphi CORBA server.
In order to show you the strengths
(ease of use) and weaknesses (flex-
ibility) of each of these different
solutions, I’ll now implement all
three. In the end, it should be obvi-
ous which one should be avoided,
and which one(s) should be pre-
ferred. So, let’s take a deep breath,
and get back to...

CORBA: The Old Way
Delphi 4 Client/Server and Delphi 5
CORBA servers use the Type
Library to store the interfaces,
methods, parameter info, etc. If
(and only if) we know beforehand
that we need to connect to a Delphi
4 Client/Server or Delphi 5 Enter-
prise CORBA server, then we can
use the old technique to connect to
it. The ‘old’ technique is based on
the Type Library import unit,
which contains the definitions of
the CORBA interface and Server
Factory class. Note that we don’t
need to add the Type Library itself
(from the CORBA server project)
to our CORBA client project, but
only the import unit. In our
example, the BobNotes CORBA
server (from Issue 45) was written
in Delphi 4 Client/Server, so we can
use the BobNotes_TLB.PAS unit
and add it to our Delphi 5 CORBA
client application.

Inside this import unit, the
TCorBobNotesCorbaFactory is
defined, with a class method
CreateInstance. Being a class
method, we can call it without the
need for an instance of the
TCorBobNotesCorbaFactory, and all

we need to pass as argument is the
name of the instance, which is
CorBobNotes. This returns an inter-
face ICorBobNotes, which we can
use to call the methods of the
remote CORBA server, such as the
GetLines method. Note that since
the ICorBobNotes interface class is
defined in the BobNotes_TLB import
unit, we get full Code Insight sup-
port inside the Delphi code editor,
so we can not only see the GetLines
method but also get help on the
number and type of the arguments
to this method. Quite handy!

Note that we need to set the
Client to nil again when we’re
done using it. This is the clean way
of working with CORBA servers:
use the instance only for as long as
you need. If you need it for more
than a few method calls, you may
want to add a property to your
main class, which is initialised and
finalised with your class itself.

The serious downside of this
‘old’ method of connecting Delphi
CORBA clients to Delphi CORBA
servers is the fact that it only
works with Delphi CORBA servers.
And with later versions of Delphi,
we can restrict this to Delphi
CORBA servers that use a Type
Library (and hence have a Type
Library import unit). This means
that as soon as we need to connect
to a CORBA server written in
another language, even
C++Builder, we’re out of luck, and
can’t use this technique.

Dynamic Interface Invocation
Suppose we don’t have the luxury
of connecting to a Delphi CORBA
server, but we must connect to a
‘foreign’ CORBA server (written in
JBuilder, for example, or any pro-
gramming environment, for that
matter). In that case, no Type
Library is used, and no Type
Library import unit is available
either.

Other environments, like
JBuilder, can use the built-in IDL
compiler, such as IDL2Java, to
compile the CORBA IDL file to a
native set of Java files. We’ll see the
same thing in the next section (the
third way). For now, we assume a
regular Delphi 4 Client/Server or
Delphi 5 Enterprise without the
VisiBroker for Delphi. And in those
situations, we can decide to
dynamically connect to the
CORBA server using a late binding
technique called DII, Dynamic
Interface Invocation. Using DII, the
Delphi CORBA client will dynami-
cally use the IDL definitions. To be
able to do so, the IDL must be
stored someplace in a table on the
network and the ORB, so the
Delphi CORBA client can bind to it
and invoke the methods defined by
the IDL. The place to store the IDL
definitions is called the Interface
Repository. We can start the Inter-
face Repository with the following
command:

start irep drbob BobNotes.IDL

Remember that the VisiBroker
Smart Agent must be running
before we can start the Interface
Repository (or any CORBA client,
for that matter). Once the Interface
Repository is started, we can
search for the available IDL
definitions, like BobNotes.

Once the VisiBroker Smart
Agent and the Interface Repository
(with the BobNotes.IDL) are
running, we can write the dynamic
(or late) binding code. This time,
we can’t use a Type Library or any
other file with type definitions, so
we must revert to using TAny types
instead. We must also add the
CorbaObj unit to the uses clause,
which contains the Orb object.

➤ Figure 1:
Delphi 5 CORBA client.

uses
BobNotes_TLB;

procedure TForm1.Button1Click(Sender: TObject);
var
Client: ICorBobNotes;
Lines: WideString;

begin
Client := TCorBobNotesCorbaFactory.CreateInstance('CorBobNotes');
Client.GetLines('Bob','swart',Lines);
Memo1.Lines.Add(Lines);
Client := nil;

end;

➤ Listing 2:
Type Library Import Units.



28 The Delphi Magazine Issue 54

From the Orb object, we should call
the Bind method passing the com-
plete IDL name of the Factory,
which is IDL:BobNotes/CorBob-
NotesFactory:1.0. After we’ve
obtained a handle to the Factory,
we can call the CreateInstance
method of this Factory object,
passing CorBobNotes as argument.
Compare this to the code we
needed to write for the ‘old’ tech-
nique, and you see that it’s very
similar.

The big difference is in the fact
that both the Factory and Client
variables are of type TAny. And
while I knew I had to call the
CreateInstance method of the Fac-
tory, I only tried this because I
remembered calling this method
when using the ‘old’ way. Once I
have an instance, I just have to
know that I can call the GetLines
method. I also need to remember
the number and types of the argu-
ments (otherwise I will not get a
compile error, but a runtime
error). To make matters worse, it
appears that the method names
are case sensitive (or at least they
are when calling them from a
CORBA server written in JBuilder).

Note that we need to declare two
local variables of type WideString
(the User and Pass), since passing

these arguments by value will gen-
erate a runtime error (argument
type incorrect). When using value
arguments, the Delphi compiler
will generate code for regular
strings instead of WideStrings.
Using variables of type WideString
as argument to the TAny method
call will make sure the CORBA
client starts looking for the correct
dynamic method call at runtime!

Also note that this time we need
to set the Client and Factory TAny
variables to unassigned (since nil
isn’t compatible with TAny types).
The general idea is the same: only
hold on to the Factory and Client
as long as you need (or use) them.

The main disadvantage of this
method of calling CORBA servers
from Delphi CORBA clients is the
fact that we have absolutely no
design-time support. No Code
Insight, but apart from that any
possible error will only be
reported at runtime! The upside, of
course, is that you only need an IDL
file stored in the Interface Reposi-
tory to be able to talk to a CORBA
server (provided it’s running).
However, there must be something
more. Something to talk to non-
Delphi CORBA servers while we
don’t have to give up the design-
time and Code Insight support.

Well, you guessed it: the best of
both worlds now exists, and is...

VisiBroker For Delphi 5
VisiBroker for Delphi uses the
VisiBroker C++ ORB (as found in
C++Builder 4 Enterprise, for exam-
ple). Inprise has encapsulated the
C++ ORB with a Delphi wrapper,
contained in the ORBPAS33.DLL
(for which we must add the
ORBPAS30 unit to the uses clause).

Given an IDL file, we can run the
IDL2PAS batch file to produce the
xxx_I.PAS (interface) and
xxx_C.PAS (client stub) units.
These, together with the new CORBA
and the OrbPas30units, are the only
things we need to include to be
able to statically invoke a CORBA
server written in any language.

Let’s consider the Factory,
which is of type CorBobNotes-
Factory (as defined in the
BobNotes_C unit). We can obtain a
Factory by calling the Bind method
of the generated TCorBobNotes-
FactoryHelper class with the Cor-
BobNotes argument. Once we have
the Factory, we can create an
instance of the CORBA server in
the usual way (as for the other two
methods), calling the Create-
Instance method with the
CorBobNotes string as argument.

If you compare the code from
Listings 2, 3 and 4, you’ll see that

➤ Figure 2: Interface Repository.

uses CorbaObj;
procedure TForm1.Button2Click(Sender: TObject);
var
Factory,Client: TAny;
Lines: WideString;
User,Pass: WideString;

begin
Factory := Orb.Bind('IDL:BobNotes/CorBobNotesFactory:1.0');
Client := Factory.CreateInstance('CorBobNotes');
User := 'Bob';
Pass := 'swart';
Client.GetLines(User,Pass,Lines);
Memo1.Lines.Add(Lines);
Client := unassigned;
Factory := unassigned;

end;

uses CORBA, OrbPas30, BobNotes_I, BobNotes_C;
procedure TForm1.Button1Click(Sender: TObject);
var
Factory: CorBobNotesFactory;
Client: ICorBobNotes;
Lines: WideString;

begin
Factory := TCorBobNotesFactoryHelper.Bind('CorBobNotes');
Client := Factory.CreateInstance('CorBobNotes');
Client.GetLines('Bob','swart',Lines);
Memo1.Lines.Add(Lines);
Client := nil;
Factory := nil

end;

➤ Listing 3: Dynamic Interface Invocation.

➤ Listing 4: IDL2PAS Generated Units.



30 The Delphi Magazine Issue 54

they have the ‘client’ code in
common. The main difference is
the lack of design-time support
using DII, and only being able to
connect to Delphi CORBA servers
(using Type Libraries) for the first
solution. Although DII remains the
most flexible solution for IDL files
where the interface is bound to
change often, I prefer the IDL2PAS
solution, Listing 4. Especially with
the other enhancements that we
find in VisiBroker for Delphi.

More Enhancements
Apart from being able to translate
IDL files to Object Pascal units, the
IDL2PAS compiler has some extra
features not present in the
‘out-of-the-box’ CORBA support in
Delphi 5. One of them is support for
exceptions, which we’ll see in a
moment, but a more relevant fea-
ture is the support for IDL struc-
tures: Object Pascal record types.

We can combine the User and
Password wstrings into a single
structure TUserPass, defined as
follows in IDL:

struct UserPass {
wstring User;
wstring Pass;

}

Unfortunately, we can’t test this
with a Delphi 5 CORBA server (as
only IDL2PAS for Delphi CORBA cli-
ents supports these structures),
but we can report that it works fine
when connecting to a JBuilder
CORBA server using the above IDL
struct. And now that JBuilder for
Linux is available, with VisiBroker
for Linux, this opens up all kinds of
exciting new architectural possi-
bilities for cross-platform cross-
language distributed applications.
But more on that later...

Exceptions
Error handling in CORBA applica-
tions is usually handled by CORBA
exceptions. Unfortunately, the
previous support for CORBA didn’t
include support for CORBA excep-
tions. And this was a major
problem, since a real-world CORBA
class hierarchy is often accompa-
nied by a set of CORBA exception
types as well.

A detailed exploration of CORBA
Exceptions is left for a later article
(when we’ll also get back to some
other VisiBroker techniques).

Conclusions
VisiBroker for Delphi adds
IDL2PAS for statically linked
CORBA clients. It also adds the
ability for records and exceptions,
which finally brings the CORBA
implementation in Delphi to a
professional level. I can’t wait until
IDL2PAS for Delphi CORBA servers
becomes available, although I fear
we may have to wait until Delphi 6
Enterprise for that. But I can wait. It
can only get better, eh? Another
feature missing from this release is
callbacks.

Finally, please note that the free
download of VisiBroker for Delphi
provides a development licence
only. A deployment licence (which

is available separately, contact
your local Inprise office for pricing
details) is still required in order to
deploy applications built with
VisiBroker for Delphi.

Next Time
Next time in the one and only real
The Delphi Magazine, we examine
internet security, a topic long over-
due, but critically important for
any serious internet application
(from a simple survey to a block-
buster e-commerce website). We’ll
see what, why, how and more. All
the reason you need to stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an IT
Consultant for TAS Advanced
Technologies and freelance
technical author.

All About CORBA
CORBA stands for Common Object Request Broker Architecture, and
is an object-oriented communication architecture between a client
and a server. Communication is handled by the ORB (Object Request
Broker) and IIOP (Internet InterORB Protocol). Using IDL (Interface
Definition Language) we can specify objects with methods and prop-
erties. Methods are like functions that can be called by the client, and
will be implemented (serviced) by the server. In order to do so, the IDL
file must be compiled to a native programming language for a spe-
cific platform. This results in stub code for the client (so we can invoke
the methods without worrying about the underlying communication)
and skeleton code for the server (which is the basis for our communi-
cation on the server side).

CORBA is both platform and language independent. This can only
work if the parameters and return types of the methods are trans-
ported over the network in a portable format. Conversion from a
native type to a portable IDL type is called marshalling, while conver-
sion back to a native platform/language type is called unmarshalling.
Usually, the marshalling process is done by an IDL compiler, like
IDL2Java or IDL2PAS.


	CORBA
	VisiBroker For Delphi 5
	IDL2PAS
	CORBA: The Old Way
	Dynamic Interface Invocation
	VisiBroker For Delphi 5
	More Enhancements
	Exceptions
	Conclusions
	All About CORBA
	Next Time

